
NCPTL: A Network Correctness and Performance Testing Language

Scott Pakin

CCS-3: Modeling, Algorithms, and Informatics Group
Computer and Computational Sciences (CCS) Division

Los Alamos National Laboratory
E-mail: pakin@lanl.gov

Abstract

This paper introduces a new, domain-specific specifica-
tion language called CONCEPTUAL. CONCEPTUAL enables
the expression of sophisticated communication benchmarks
and network validation tests in comparatively few lines of
code. Besides helping programmers save time writing and
debugging code, CONCEPTUAL addresses the important—
but largely unrecognized—problem of benchmark opacity.
Benchmark opacity refers to the current impracticality of
presenting performance measurements in a manner that pro-
motes reproducibility and independent evaluation of the re-
sults. For example, stating that a performance graph was
produced by a “bandwidth” test says nothing about whether
that test measures the data rate during a round-trip trans-
mission or the average data rate over a number of back-to-
back unidirectional messages; whether the benchmark pre-
registers buffers, sends warm-up messages, and/or pre-posts
asynchronous receives before starting the clock; how many
runs were performed and whether these were aggregated by
taking the mean, median, or maximum; or, even whether
a data unit such as “MB/s” indicates 106 or 220 bytes per
second.

Because CONCEPTUAL programs are terse, a bench-
mark’s complete source code can be listed alongside per-
formance results, making explicit all of the design deci-
sions that went into the benchmark program. Because
CONCEPTUAL’s grammar is English-like, CONCEPTUAL pro-
grams can easily be understood by non-experts. And be-
cause CONCEPTUAL is a high-level language, it can target a
variety of messaging layers and networks, enabling fair and
accurate performance comparisons.

1. Introduction

Communication benchmarks play an important role in
the area of high-performance computing. They help pro-
vide insight into application performance; they enable per-
formance comparisons among disparate networks; and, they

can be fed into performance models which are used to pre-
dict application and system performance [3, 4, 7]. Large-
scale, parallel applications can spend a significant fraction
of their total execution time communicating. For instance,
Kerbyson et al. show how two representative, large-scale
ASCI applications—SAGE and Sweep3D—may spend 30–
50% of their execution time communicating when run on
thousands of processors [5]. As a result, it is crucial that
low-level network performance be characterized before one
can understand and/or predict application performance.

Although communication benchmarks are important,
benchmarking methodology is fraught with inconsistent ter-
minology, variegated metrics for reporting results, and im-
plementation artifacts that greatly impact performance. As
a consequence, reported results are rarely reproducible and
may present misleading estimates of how well a network
will perform when used by a running application. Con-
sider, for example, a bandwidth benchmark, which purport-
edly measures data rate versus message size. Although a
bandwidth benchmark is one of the most common com-
munication benchmarks, it may actually be expressed in a
variety of different ways, causing radically different band-
widths to be reported. For instance, the communication pat-
tern may be “throughput style”, in which Node A sends a
number of back-to-back messages to Node B and stops the
clock upon receiving a short acknowledgment message—
or even a full-length message—from Node B. Or, the pat-
tern may be “ping-pong style”, in which the two nodes re-
peatedly exchange messages, stopping the clock after the
last message is received. Figure 1 quantifies the perfor-
mance difference between these two approaches on a clus-
ter of 1 GHz Itanium 2-based nodes interconnected with a
Quadrics QsNet network [13]: the throughput style reports
numbers from 71% to 161% of those reported by the ping-
pong style—a significant range of differences. Regardless
of the communication style used, the benchmark may run
for a fixed number of messages or a fixed length of time.
The benchmark may perform a number of warm-up itera-
tions before starting the clock. Messages may be sent syn-
chronously or asynchronously. Asynchronous receives may

be posted before or after the clock starts ticking. Even given
the same basic benchmark, results can be reported differ-
ently. The number of messages transmitted and the statis-
tical metric applied (e.g., mean, median, or maximum) can
vary from benchmarker to benchmarker. Even something as
simple as the units used for the results—“MB/s” designating
either 106 or 220 bytes per second—can induce a 5% sway
of the numbers.

1
2

4
8

16
32

64
128

256
512

1K
2K

4K
8K

16K
32K

64K
128K

256K
512K

1M

Message size (B)

0

50

100

150

200

250

300

350

400

B
an

dw
id

th
 (

M
B

/s
)

Throughput/ping-pong (%)
Throughput style
Ping-pong style

Figure 1. Relative performance of throughput
vs. ping-pong bandwidth on an Itanium 2 +
Quadrics cluster

Although there is often good reason for expressing a par-
ticular benchmark in one way or another, the real problem—
which we call benchmark opacity—is that it is not obvious
beyond a superficial notion as to what precisely the bench-
mark measures. Benchmark opacity leads to misinterpreted
results, incorrectly drawn conclusions, and, eventually, to
money being spent on a network that suboptimally handles
important applications’ communication needs. The ideal so-
lution to the problem of benchmark opacity is to publish
the complete benchmark source code alongside the corre-
sponding measurement data. Unfortunately, this practice is
largely impractical, as even a simple benchmark may con-
tain multiple pages of extra code for initialization, parsing
of command-line options, logging results, and so forth. Pub-
lishing only the benchmark core is not a valid solution, as
the initialization code may contain subtleties that yield sub-
stantially different results.

This paper presents NCPTL, a solution to the
problem of benchmark opacity. NCPTL—the cap-
italized letters represent “Network Correctness and Per-
formance Testing Language”—is a high-level specifica-
tion language designed specifically for testing the correct-
ness and performance of communication networks.1 Com-

1
NCPTL is pending approval for public release and will

eventually be available from http://www.c3.lanl.gov/~pakin/
software/ under an open-source license.

plete benchmarks—including initialization, command-line
parsing, execution timing, statistics gathering, and data
logging—can be expressed in comparatively few lines of
code and can thereby be reproduced easily alongside per-
formance tables and graphs. NCPTL’s grammar is
English-like and highly readable even without prior expo-
sure to the language or knowledge of the precise semantics.
The NCPTL compiler has a modular back end which
is not tied to a single language or messaging layer; the com-
piler’s internal representation is sufficiently high-level as to
support arbitrary language/messaging layer combinations.
Finally, the NCPTL run-time system’s logging facil-
ity writes to every log file a wealth of information about
the benchmark’s execution environment, facilitating repro-
ducible experimentation and results. The net outcome is that
NCPTL enables a scientific approach to communica-
tion benchmarking not otherwise practical, convenient, or
necessarily even possible. With NCPTL, experimen-
tal setups are precisely specified, performance results are
unambiguous, and even the review process is streamlined
and simplified.

The remainder of the paper is organized as follows. In
Section 2 we show how NCPTL differs from previ-
ous works. Section 3 describes the NCPTL language.
We discuss the implementation of the NCPTL com-
piler, run-time system, and associated tools in Section 4. In
Section 5 we demonstrate that a program expressed in N-
CPTL produces the same results as the corresponding
program hand-coded in a general-purpose programming lan-
guage and present performance results from a “real-world”
use of NCPTL. Finally, Section 6 draws some conclu-
sions based upon the work described in this paper.

2. Related Work

NCPTL is not the first domain-specific specifica-
tion language designed for network testing but it is ar-
guably the most sophisticated. Prior state of the art is
epitomized by MITRE’s Local Scheduler Executor (LSE)
language [10]. LSE supports—among other constructs—
counted loops, synchronous and asynchronous communica-
tion operations, faked “computation”, and the ability to log
performance data, as does NCPTL. However, LSE
and its counterparts lack NCPTL’s expressive power.
Consider the synchronous pipe benchmark described in
Monk, et al.’s report [10]. In that benchmark, each row of
nodes repeatedly requests and receives data from each of
the nodes in the previous row. LSE requires separate code
for each node in the program, leading to large, difficult-to-
maintain programs. The message size, number of iterations,
compute time, and node topology are all hardwired into the
program. Like an assembly language, LSE code is rarely
written by hand. Rather, LSE programs are normally pro-
duced by ad hoc scripts. In contrast, NCPTL pro-
grams describe communication from a global perspective.

2

They can accept command-line arguments which enable the
message size, number of iterations, compute time, and node
topology to be determined dynamically at run time, as op-
posed to statically at program-development time. While
each line of LSE code is terse and only partially under-
standable to one unfamiliar with the format, NCPTL
programs read almost like English prose. LSE’s logging
consists of simple timestamped operations, while NCP-
TL can log the value of arbitrary expressions, making ex-
plicit the statistical operations performed over the complete
set of values. In short, NCPTL is a featureful, read-
able, high-level language, while the prior state of the art in
network-testing languages is more akin to an assembly lan-
guage.

Multiple implementations of communication bench-
marks differ in subtle ways which may greatly impact the
performance results. NCPTL’s approach to this prob-
lem is to make benchmarking methodology precise and
explicit. An alternative approach is to define a suite of
communication benchmarks, each with a fixed implemen-
tation and known way of reporting performance. With
this approach, everyone familiar with the benchmark suite
can understand what an ensuing performance graph repre-
sents. The standard-benchmark approach, represented by
such suites as PMB [12] and SKaMPI [14] generally in-
volves a set of benchmark codes and test harnesses. A user
merely compiles and runs the benchmarks and reports the
results in a prescribed manner. The key difference between
the standard-benchmark and NCPTL approaches is
that the former enforces fair comparisons of results but lim-
its those comparisons to a stock set of benchmarks and
requires global agreement to use that set. NCPTL,
in contrast, enables unlimited benchmark variety at the
cost of merely clarifying when unlike data are being com-
pared rather then limiting comparisons to like data. In ad-
dition, the standard-benchmark approach typically targets
a specific messaging layer (MPI in the case of PMB and
SKaMPI) while NCPTL programs are portable across
messaging layers. The tradeoff is that NCPTL can-
not test features unique to a particular messaging layer such
as noncontiguous datatypes in MPI or remote method invo-
cations in Java/RMI. Nevertheless, many standard bench-
marks could be rewritten in NCPTL, combining the
advantages of both approaches.

In addition to its ability to clarify the execution and
results of standard communication benchmarks, NCP-
TL can also be used for custom benchmarks that are devel-
oped and iteratively refined with the goal of gaining under-
standing into how a system performs, as opposed to merely
demonstrating superior network performance to a competi-
tor’s offering. Section 5 elaborates on this point.

3. Language

NCPTL is a domain-specific specification lan-
guage. Although it can express complex communication
patterns, NCPTL is not a Turing machine and is there-
fore not capable of general computation. For brevity, N-
CPTL’s complete, formal grammar is omitted from this
paper; the interested reader is referred to the NCPTL
user’s manual [11] for a more thorough presentation of the
language. Instead, we present the language as a series of
annotated examples designed to showcase some of the key
features of the language.

3.1. A Latency Benchmark

NCPTL was designed to be easy to read. The aim
of Section 3.1 is to demonstrate that NCPTL code is
easy to write, as well. This section shows, tutorial-style,
how to construct a latency benchmark in NCPTL. The
goal of a latency benchmark is to measure the time it takes
to send a message from one node to another. Because clus-
ters generally lack globally synchronized clocks, a latency
benchmark normally has Node A send a message to Node B,
who then sends an equal-sized message back to Node A.
Node A then reports half of the round-trip time as the la-
tency, commonly measured in microseconds.

Listing 1 depicts a complete, but trivial, NCPTL
program that performs a single round-trip message send. In
the listing, keywords are shown in boldface. The following
are some points to note about the code:

• The program is very English-like. NCPTL pro-
grams are intended to read much like a human would
describe a benchmark to another human.

• The language is whitespace- and case-insensitive. For
clarity, the listings in this paper are formatted in a se-
mantically meaningful way.

• The program is comprised primarily of keywords. For
one unfamiliar with NCPTL, keywords are easier
to understand than symbols.

• NCPTL programs refer to “tasks” instead of
“nodes”. This is because the mapping of (software)
tasks onto (hardware) nodes is external to NCP-
TL and is handled by a third-party job launcher
(e.g., mpirun).

• Task 0’s sending of a 0-byte message to task 1 implic-
itly causes task 1 to receive a 0-byte message from
task 0 (and vice versa in line 2).

• By default, sending and receiving are blocking calls,
corresponding, for example, to MPI_Send() and
MPI_Recv() when MPI [9] is used as the underly-
ing messaging layer.

3

• No data is logged; Listing 1 merely sends a message in
each direction then terminates.

Listing 1. The beginnings of a latency bench-
mark

1 Task 0 sends a 0 byte message to task 1
then

2 ta sk 1 sends a 0 byte message to task 0 .

Simplicity was a primary design goal. The language has
no complex datatypes (e.g., arrays or structures), no user-
defined functions, and no variables as such, although it does
allow values to be let-bound to names within a scope. Nev-
ertheless, experience has shown that a wide variety of net-
work performance and correctness tests can be written with
the features provided.

A logical next step towards evolving Listing 1 into a com-
plete latency benchmark is to have the program perform a
number of back-to-back ping-pongs and log the average la-
tency (defined as half of the round-trip time) to a file. List-
ing 2 presents the next evolution of the latency benchmark.
NCPTL’s logs statement specifies an expression to log
and a corresponding description, which is used verbatim as
a column header in the log file. (See Section 4 for more de-
tails about log files.) NCPTL implicitly maintains an
elapsed_usecs variable which measures elapsed time
in microseconds. Listing 2 reports the arithmetic mean of
the round-trip time but NCPTL also provides func-
tions for computing the median, harmonic mean, standard
deviation, minimum, maximum, or sum of a set of data. The
log file even indicates what function was used so that there
is no ambiguity as to how the data were aggregated.

Listing 2. Mean of 1000 ping-pongs

1 For 1 0 0 0 r e p e t i t i o n s {
2 ta sk 0 r e s e t s i t s counters then
3 ta sk 0 sends a 0 byte message to task

1 then
4 ta sk 1 sends a 0 byte message to task

0 then
5 ta sk 0 l o g s the mean of e l a p s e d _ u s e c s

/ 2 as " 1 / 2 RTT (u s e c s) "
6 }

As in many programming languages, loop bodies con-
sist of only a single statement but curly braces can be used
to introduce compound statements. Hence the for loop in
Listing 2 encompasses the following four statements. The
phrase “resets its counters” tells NCPTL to zero out
elapsed_usecs and other such counters and to restart
the clock.

Listings 1–2 send only zero-byte messages. The final
incarnation of our latency test, Listing 3, performs the test
using a variety of message sizes. For a more “professional”
touch, it also accepts various parameters from the command
line; it verifies that it was given at least two processors; it ex-
plicitly specifies the version of the NCPTL language
it expects for both forward and backward compatibility as
the language evolves; and, it is commented for additional
readability.

Listing 3. The CONCEPTUAL equivalent of
mpi_latency.c

1 # D . K . Panda ’ s ping−pong l a t e n c y t e s t
r e w r i t t e n i n coNCePTuaL

2

3 Require language v e r s i o n " 0 . 5 " .
4

5 # Parse t h e command l i n e .
6 r e p s i s " Number o f r e p e t i t i o n s o f each

message s i z e " and comes from "--reps" or
"-r" with d e f a u l t 1 0 0 0 0 .

7 wups i s " Number o f warmup r e p e t i t i o n s o f
each message s i z e " and comes from
"--warmups" or "-w" with d e f a u l t 1 0 .

8 maxbytes i s "Maximum number o f b y t e s t o
t r a n s m i t " and comes from "--maxbytes" or
"-m" with d e f a u l t 1M.

9

10 # Ensure t h a t we have a peer w i t h whom t o
communicate .

11 Asser t t h a t " t h e l a t e n c y t e s t r e q u i r e s a t
l e a s t two t a s k s " with num_tasks >=2.

12

13 # Perform t h e benchmark .
14 For each msgs ize in { 0 } , { 1 , 2 , 4 , . . . ,

maxbytes } {
15 a l l t a s k s synchronize then
16 f o r r e p s r e p e t i t i o n s p lus wups warmup

r e p e t i t i o n s {
17 ta sk 0 r e s e t s i t s counters then
18 ta sk 0 sends a msgs ize byte message

to task 1 then
19 ta sk 1 sends a msgs ize byte message

to task 0 then
20 ta sk 0 l o g s the msgs ize as " By tes "

and
21 the mean of e l a p s e d _ u s e c s

/ 2 as " 1 / 2 RTT (u s e c s
) "

22 } then
23 ta sk 0 f l u s h e s the l o g
24 }

Some noteworthy details of Listing 3 include the follow-
ing:

4

• As shown in line 8, constants can accept suffixes,
which act as multipliers. For example, 64K represents
65,536 (64 × 1024) and 5E6 represents 5000 (5 × 106).

• For convenience, NCPTL includes the notion
of “warmup repetitions” as an idiom in the language
(line 16). Non-idempotent operations such as writing
to the log file are suppressed during warmup repeti-
tions.

• Line 23 forces NCPTL to calculate the mean and
write that to the log file. Without a log flush, the mean
calculation would apply across all message sizes in-
stead of being constrained to a single size.

• NCPTL loops can use mathematical set notation
(line 14) to describe the range of numbers that the loop
variable accepts.

Regarding the final point, variables can iterate over each en-
try in a fully specified set (e.g., “{2, 13, 5, 5, 3, 8}”) or
over a partially specified arithmetic or geometric progres-
sion (e.g., “{1, 3, 5, . . . , 77}”). The NCPTL compiler
automatically figures out the sequence. Sets can be spliced
together by commas; the loop variable will iterate over each
set in turn. Listing 3 separates out the “0” because “{0, 1,
2, 4, . . . , 1M}” is neither an arithmetic nor a geometric pro-
gression.

At 24 lines—16 excluding comments and blank lines—
the complete benchmark can fit on a single page with abun-
dant room remaining for explanatory text and performance
graphs, yet the benchmark is precise enough for a reader to
understand exactly what was measured and how the results
are calculated. The only thing missing is a description of the
environment in which the benchmark ran; this is covered in
Section 4.1.

3.2. Additional Language Features

Section 3.1 introduced some of the basic features of the
NCPTL language, including parameter declarations,
assertions, two different for loops, set notation, compound
statements, the send statement, and statements for produc-
ing log files. We now briefly describe some of the language
constructs not previously encountered. A complete descrip-
tion of the language is presented in the NCPTL user’s
guide [11].

Communication Constructs The send statement accepts
a variety of parameters. Messages can be sent syn-
chronously or asynchronously. They can recycle message
buffers or use a different buffer for every invocation. Buffers
can be aligned on arbitrary byte boundaries. Buffers can
be “touched” before sending and/or after reception. The
data can be verified with bit errors automatically tallied.

Listing 4, an all-to-all validation test, demonstrates asyn-
chronous transmission, aligned message buffers, and data
verification. Note that NCPTL automatically main-
tains the bit_errors variable. (The technique used to
tally bit errors is described in Section 4.2.) Listing 4 also
demonstrates a new for construct which runs for a given
length of time rather than for a given number of iterations.
In addition to point-to-point messaging, the language also
supports multicast messages and barrier synchronization.

Listing 4. A network correctness test

1 # Ensure t h a t e v e r y t a s k can send t o
e v e r y o t h e r t a s k .

2

3 Require language v e r s i o n " 0 . 5 " .
4

5 msgs ize i s " Number o f b y t e s each t a s k
s e n d s " and comes from "--msgsize" or
"-m" with d e f a u l t 1K.

6 t e s t l e n i s " Number o f m i n u t e s f o r which
t o run " and comes from "--duration" or
"-d" with d e f a u l t 1 .

7

8 Asser t t h a t " t h i s program r e q u i r e s a t
l e a s t two t a s k s " with num_tasks >1.

9

10 For t e s t l e n minutes
11 For each o f s in { 1 , . . . , num_tasks −1} {
12 a l l t a s k s s r c asynchronous ly send a

msgs ize byte page a l i g n e d message
with v e r i f i c a t i o n to task (s r c+

o f s) mod num_tasks then
13 a l l t a s k s await comple t ion
14 }
15

16 A l l t a s k s l o g b i t _ e r r o r s as " B i t e r r o r s " .

Non-Communicating Statements Although NCP-
TL’s focus is on communication there are a few
statements that do not perform communication operations
but rather operate locally. In addition to the previously
presented logs, flushes the log, resets its counters, and as-
sert, NCPTL provides the following locally operating
statements (among others):

• computes for “computes” in a tight spin-loop for a
given length of time and sleeps for relinquishes the
CPU for a given length of time.

• touches walks a memory region with a given stride,
touching the data as it goes along. This is useful
both for mimicking computation and for measuring
cache/memory performance.

5

• outputs writes a string or expression to the standard
output device—useful for debug and progress mes-
sages.

Expressions In addition to the basic relational and arith-
metic operators, NCPTL provides an exponentiation
operator, bitwise operators, and relational operators to test
evenness, oddness, and the divisibility of one number by
another. Noteworthy functions included in the run-time sys-
tem include a function for returning the minimum number
of bits required to represent an integer (bits) and a function
for rounding a number to the nearest single-digit factor of
an integral power of 10 (factor10). The run-time system
also supports various topology operations that compute par-
ents and children in n-ary and k-nomial trees and arbitrary
offsets in 1-D, 2-D, and 3-D meshes and tori.

Sets of tasks can be specified in a variety of ways. We
have already seen task followed by a constant (e.g., in
Listing 3) and “all tasks”—with an optional variable
declaration—as in Listing 4. Some additional forms include
“a random task”, which randomly selects a task; “a ran-
dom task other than x”, which randomly selects a task
guaranteed not to be equal to x; task followed by an expres-
sion, which refers only to those tasks whose rank matches
the expression; and, a “such that” (“|”) variation, which both
declares a variable and restricts it to a given set of tasks.
For example, “task x |x >0 /\ x<num_tasks−2” operates only
on numbers that are both greater than zero and less than the
maximum rank minus 2.

In short, the NCPTL language is rich in functional-
ity yet highly legible. NCPTL programs read like En-
glish, making them easy to understand even without knowl-
edge of the underlying formal grammar. Comparatively
few lines of code can produce a complete benchmark, mak-
ing NCPTL uniquely suitable for rapidly producing
and refining special-purpose network correctness and per-
formance tests.

4. Implementation

NCPTL is implemented in Python using the
SPARK little-language framework [1]. The structure of
the NCPTL compiler is largely undistinguished: a
lexer converts NCPTL source code into a token list;
a parser converts the token list into an abstract syntax tree
(AST); and, and a code generator converts the AST into low-
level code (e.g., C) including calls to a messaging library
(e.g., MPI). The NCPTL compiler does have a couple
of noteworthy features, however:

1. The NCPTL lexer canonicalizes keyword vari-
ants such as send/sends, message/messages, and a/an
into a uniform representation to permit programs to
more closely resemble grammatically correct English.

2. Because each component of the compiler is a stan-
dalone module, multiple code-generator modules are
possible. A compiler command-line option dynam-
ically selects a particular module at compile time.
Although only C+MPI output is currently imple-
mented, new code generators (e.g., C+TCP, For-
tran+OpenMP, Java+RMI, etc.) should be straightfor-
ward to produce.2

What makes the compiler’s code generation unique is that
the same NCPTL source code can target any lan-
guage/library for which a code-generator module exists.
This enables fair comparisons of communication perfor-
mance across languages/libraries.

The NCPTL run-time system consists of a library
written in C and invariant across any code generator that pro-
duces code capable of invoking C functions. The library—
in fact, all of NCPTL—is configured using the GNU
Autotools [15] and builds properly on a variety of Unix-
like systems (Linux, IRIX, Solaris, and Tru64), on a vari-
ety of architectures (IA-32, IA-64, MIPS-4, Alpha EV67,
and SPARC v9), and with a variety of compilers (GNU,
Intel, MIPSpro, HP, and Sun). The library provides rou-
tines for memory allocation, statistics reporting, random-
number generation, interrupt handling, log-file manipula-
tion, data verification, and various functions that are ex-
ported to NCPTL programs. The library can take ad-
vantage of PAPI [2] or a variety of platform-specific mecha-
nisms for acquiring performance information. It can process
command-line arguments—both program-specified and in-
ternally generated—and automatically provides support for
a “--help” option that outputs program-specific usage in-
formation.

4.1. Log-file Format

One of the most important responsibilities of the N-
CPTL run-time system is to log measurement data to a
file in a clear, consistent, informative, and easily parseable
format. To this end, log files contain the following pieces
of information, with the data format shown in brackets after
each item.

• information about the execution environment [K:V]

• all environment variables and their values [K:V]

• the complete program source code [text]

• the program-specific measurement data [CSV]

• various timestamps and information about resource uti-
lization [K:V]

2Approximately 60 Python object methods implement the complete lan-
guage. Many of these are independent of the target language/library but the
others do need to be rewritten for each new language or library.

6

Log files are stored in a simple format that is both easy for
a human to read and easy for a program to parse. Measure-
ment data is stored in comma-separated value (“CSV”) for-
mat, i.e., columns separated by commas, rows separated by
newline characters, and column-header string surrounded
by double quotes. All other log-file content—much in the
form of simple 〈key〉:〈value〉 pairs (“K:V”)—is considered
commentary and is stored in lines beginning with “#”.
NCPTL logs a wealth of information about the

execution environment. This includes information about
the system architecture, operating system, library build
environment, microsecond timer, and application-specific
command-line parameters. It even logs warning messages if
the microsecond timer exhibits poor granularity, a large stan-
dard deviation, or if it timer utilizes a 32-bit cycle counter
and therefore wraps around every few seconds. The inten-
tion is that the log file present enough information to fully
reproduce an experiment and gauge the validity of the re-
ported results—an ability not readily possible without N-
CPTL.

The data in a log file is written with two rows of col-
umn headings. The first row is the string provided to the
logs statement. The second row describes how the column
data were aggregated. For example, the column headers pro-
duced by Listing 3 are shown in Figure 2.

"Bytes","1/2 RTT (usecs)"
"(only value)","(mean)"

Figure 2. Log-file column headers associated
with Listing 3

4.2. Verification

NCPTL takes a unique approach to verifying mes-
sages sent “with verification”. Rather than include with
the message a CRC word, which has limited ability to re-
port severe data corruption, the sender fills each message
buffer with a random-number seed followed by the initial N
random numbers generated using that seed. (The NCP-
TL run-time system utilizes the Mersenne Twister [8] for
its speed and randomness properties.) To verify the mes-
sage contents, the receiver seeds its random-number genera-
tor with the first word of the message, generates N random
numbers, and compares these to the message contents. N-
CPTL is thus able to accurately report the total number
of uncorrected bit errors that made it past the network and
software stacks undetected.3 This number is exported to a
NCPTL program as the variable bit_errors and
can be logged like any other data.

3Exception: If a bit error corrupts the seed word, NCPTL may
report an artificially large number of bit errors.

4.3. Additional Tools

In addition to the compiler and run-time system, the N-
CPTL system provides a few tools that are useful for
presenting measurements made with NCPTL. log-
extract is a Perl script that extracts various pieces of
information from a log file and formats them for presenta-
tion or inclusion into another software package. Most im-
portantly, logextract can discard the comments from a
log file, extract the CSV data, and reformat it for immediate
import by various spreadsheets or graphing packages. In
addition, logextract can format the data or execution-
environment information for presentation. For instance,
logextract can extract the execution-environment infor-
mation from a log file and format it using the LATEX typeset-
ting system. The NCPTL system also includes syntax
highlighters for a variety of editors and pretty-printers for a
variety of formatting systems. (These are all generated auto-
matically so they stay consistent with the language.) All of
the code listings in this paper were produced using one of
these pretty-printers. In summary, NCPTL is a com-
plete system for network correctness and performance test-
ing, not just a single, standalone tool.

5. Evaluation

It is important for NCPTL’s success to demon-
strate that programs written in NCPTL produce the
same results as the corresponding hand-coded program
written using the target language and messaging layer.
To demonstrate this, we faithfully converted the 58-line
C+MPI latency test available from http://nowlab.
cis.ohio-state.edu/projects/mpi-iba/
performance/mpi_latency.c into the 16-line N-
CPTL version previous shown in Listing 3 on page 4 and
the 89-line C+MPI bandwidth test available from http:
//nowlab.cis.ohio-state.edu/projects/
mpi-iba/performance/mpi_bandwidth.c into
the 15-line NCPTL version shown in Listing 5. (All
line counts exclude blanks and comments.) These tests
were chosen because they are typical communication
microbenchmarks, they were written by a third party, and
they have previously been used to compare performance
across different types of networks [6]. Note that the
NCPTL versions actually improve upon the originals:
the maximum message size is not hardwired into the
program; the number of warmup iterations is read from
the command line, not hardwired into the program; and,
multiple messages sizes are tested per program invocation.
Furthermore, the NCPTL versions automatically log
all of the items described in Section 4.1 in addition to the
size and latency/bandwidth measurements.

Figure 3(a) compares the communication latencies mea-
sured by the hand-coded mpi_latency test with the N-
CPTL equivalent presented in Listing 3. Figure 3(b)

7

Listing 5. The CONCEPTUAL equivalent of
mpi_bandwidth.c

1 # D . K . Panda ’ s bandwid th t e s t r e w r i t t e n
i n coNCePTuaL

2

3 Require language v e r s i o n " 0 . 5 " .
4

5 r e p s i s " Number o f r e p e t i t i o n s o f each
message s i z e " and comes from "--reps" or
"-r" with d e f a u l t 1 0 0 0 .

6 maxbytes i s "Maximum number o f b y t e s t o
t r a n s m i t " and comes from "--maxbytes" or
"-m" with d e f a u l t 1M.

7

8 For each msgs ize in { 1 , 2 , 4 , . . . ,
maxbytes } {

9 # Send some warm−up messages .
10 ta sk 0 asynchronous ly sends r e p s

msgs i ze byte page a l i g n e d messages
to task 1 then

11 a l l t a s k s await comple t ion then
12 ta sk 1 sends a 4 byte message to task

0 then
13 a l l t a s k s synchronize then
14 # Perform t h e a c t u a l t e s t .
15 ta sk 0 r e s e t s i t s counters then
16 ta sk 0 asynchronous ly sends r e p s

msgs i ze byte page a l i g n e d messages
to task 1 then

17 a l l t a s k s await comple t ion then
18 ta sk 1 sends a 4 byte message to task

0 then
19 ta sk 0 l o g s msgs ize as " By tes " and
20 b y t e s _ s e n t / e l a p s e d _ u s e c s as

" Bandwidth "
21 }

compares the communication bandwidth measured by the
hand-coded mpi_bandwidth test with the NCPTL
equivalent presented in Listing 5. The data were measured
on an Itanium 2 cluster interconnected with a Quadrics net-
work [13]. As Figure 3 shows, there is no qualitative differ-
ence between the curves representing the NCPTL and
hand-coded versions of the programs. In short, the C+MPI
code generated automatically by NCPTL compares ex-
tremely favorably to its hand-coded equivalent.

Although the most popular use of communication bench-
marks is to compare the performance of disparate networks
on a variety of communication patterns, another important
application is application-centric analytical performance
modeling [3, 4, 7]. This form of modeling is commonly
used to accurately predict the performance of a given appli-
cation when run on a particular computer system or to as-
sess if an application is observing the performance it could

0
1

2
4

8
16

32
64

128
256

512
1K

2K
4K

8K
16K

32K
64K

128K

Message size (B)

0

50

100

150

200

250

300

350

400

L
at

en
cy

 (
µs

)

Hand-coded
coNCePTuaL

(a) Latency

1
2

4
8

16
32

64
128

256
512

1K
2K

4K
8K

16K
32K

64K
128K

256K
512K

1M

Message size (B)

0

50

100

150

200

250

300

350

400
B

an
dw

id
th

 (
M

B
/s

)
Hand-coded
coNCePTuaL

(b) Bandwidth

Figure 3. Hand-coded benchmarks vs. their
CONCEPTUAL equivalents

be expected to observe. The idea is to parameterize an appli-
cation’s performance in terms of system performance char-
acteristics, such as CPU speed and network performance,
which are quantified by benchmarks and plugged into the
model to produce a performance prediction. These bench-
marks tend to be application-specific and generally encap-
sulate performance achieved during an application’s actual
activities instead of the peak performance that could poten-
tially be achieved by a carefully crafted program. The sub-
set of those benchmarks which are used to measure commu-
nication performance parameters, being specific to a single

8

application, usually have short lifetimes and should there-
fore ideally be simple to write. They may also represent
complex communication patterns, making them difficult to
express using a low-level language and messaging library.
NCPTL is therefore an ideal tool for generating the
custom benchmarks needed for application-centric analyti-
cal performance modeling.

Consider, for example, the performance model used by
Kerbyson et al. to accurately predict the performance of
SAGE, a 150,000-line Eulerian hydrodynamics code that
is representative of part of the ASCI workload [4]. One
of the performance parameters used in that work represents
communication latency and bandwidth in the presence of
network contention. Listing 6 is a NCPTL version
of the network-contention benchmark used to gather perfor-
mance data for Kerbyson et al.’s SAGE model. The bench-
mark measures ping-pong performance between task 0 and
task N/2 first in isolation, then concurrently with repeated
ping-pong communication between tasks 1 and N/2 + 1,
then concurrently with that communication and with ping-
pong communication between tasks 2 and N/2 + 2, and
so forth. Figure 4 presents the results of running the
SAGE network-contention program on a 16-processor SGI
Altix 3000 NUMA system [16]. As the figure shows, perfor-
mance drops immediately when going from no contention
to a single competing ping-pong but drops no further when
the contention level is increased. This indicates that the (2-
CPU) front-side bus is the bandwidth bottleneck and that the
remainder of the network has sufficient capacity to support
eight concurrent ping-pongs.

0
1

2
3

4
5

6
7

Contention level
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

lg(message size in bytes)

10
0

20
0

30
0

40
0

50
0

B
an

d
w

id
th

 (
M

B
/s

)

Figure 4. Network contention on a 16-
processor Altix, as measured by CONCEP-
TUAL

6. Conclusions

Although communication benchmarks are an important
tool for evaluating network performance, a serious problem
that this paper identifies is that performance measurements
are frequently opaque. That is, only the benchmark’s au-
thor knows exactly what the benchmark does and the pre-
cise conditions under which the measurements were taken.
As a result, disparate data are wrongly compared, incorrect
conclusions are drawn, and measurements are utterly irre-
producible by third parties. Even special-purpose bench-
marks not intended to be shared with others suffer from
benchmark opacity in cases in which the author unearths
old performance results but has no record of what bench-
mark produced those results, what parameters were utilized,
or what computing environment was utilized.

We presented a solution to the problem of benchmark
opacity in the form of NCPTL, a new domain-specific
language designed primarily to improve communication-
benchmarking methodology. NCPTL’s most note-
worthy features are that (1) the NCPTL language
is English-like and easily readable by people who know
nothing about NCPTL; (2) log files produced by the
NCPTL run-time system include not just the perfor-
mance results but also a wealth of information about the
execution environment and the complete benchmark source
code; and, (3) back-end code generated by the NCP-
TL compiler yields nearly identical performance results
to the hand-written, hand-optimized version of the same
benchmark. In addition to network performance benchmark-
ing, NCPTL supports network correctness testing. It
supports a novel technique for tallying bit errors that pass
undetected through the network hardware and messaging
software, making it possible to accurately gauge a cluster’s
fault rate or error-correction efficacy. Finally, NCPTL
is well-suited for producing the one-of-a-kind benchmarks
that lie at the core of application-centric analytical perfor-
mance modeling and are designed to provide insight into
application performance.

The primary conclusion that one should draw from this
work is by combining a domain-specific language, a mod-
ular compiler, and a rich run-time system, NCPTL
makes it possible to present network performance data in
a form that can be easily understood and properly subjected
to peer review. The result is that NCPTL enables a
more scientific approach to benchmarking network perfor-
mance than is otherwise possible.

References

[1] J. Aycock. Compiling little languages in Python. In Proceed-
ings of the Seventh International Python Conference, pages
69–77, Houston, Texas, Nov. 10–13, 1998.

[2] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A
portable programming interface for performance evaluation

9

on modern processors. The International Journal of High
Performance Computing Applications, 14(3):189–204, Fall
2000.

[3] A. Hoisie, O. Lubeck, and H. Wasserman. Performance
and scalability analysis of teraflop-scale parallel architec-
tures using multidimensional wavefront applications. The
International Journal of High Performance Computing Ap-
plications, 14(4), Nov. 2000.

[4] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J.
Wasserman, and M. Gittings. Predictive performance and
scalability modeling of a large-scale application. In Proceed-
ings of SC2001, Denver, Colorado, Nov. 10–16, 2001.

[5] D. J. Kerbyson, A. Hoisie, and H. J. Wasserman. A compar-
ison between the Earth Simulator and AlphaServer systems
using predictive application performance models. In Pro-
ceedings of the 2003 International Parallel and Distributed
Processing Symposium (IPDPS), Nice, France, Apr. 22–26,
2003.

[6] J. Liu, J. Wu, S. P. Kinis, D. Buntinas, W. Yu, B. Chan-
drasekaran, R. Noronha, P. Wyckoff, and D. K. Panda.
MPI over InfiniBand: Early experiences. Technical Re-
port OSU-CISRC-10/02-TR25, Computer and Information
Science Department, The Ohio State University, Columbus,
Ohio, Jan. 30, 2003.

[7] M. Mathis, D. J. Kerbyson, and A. Hoisie. A performance
model of non-deterministic particle transport on large-scale
systems. In P. M. A. Sloot, D. Abramson, A. V. Bogdanov,
J. J. Dongarra, A. Y. Zomaya, and Y. E. Gorbachev, edi-
tors, Proceedings of the International Conference on Com-
putational Science (ICCS), Part III, volume 2659 of Lec-
ture Notes in Computer Science, pages 905–915, Melbourne,
Australia and St. Petersburg, Russia, June 2–4, 2003.

[8] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudorandom num-
ber generator. ACM Transactions on Modeling and Com-
puter Simulations, 8(1):3–30, Jan. 1998.

[9] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard, June 12, 1995.

[10] L. Monk, R. Games, J. Ramsdell, A. Kanevsky, C. Brown,
and P. Lee. Real-time communications scheduling: Final
report. Technical Report MTR 97B0000069, The MITRE
Corporation, Bedford, Massachusetts, May 1997.

[11] S. Pakin. NCPTL user’s guide. Los Alamos Unclassi-
fied Report 03-7356, Los Alamos National Laboratory, Los
Alamos, New Mexico, Oct. 2003.

[12] Pallas, GmbH. Pallas MPI Benchmarks—PMB, Part MPI-1,
Mar. 9, 2000.

[13] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg.
The Quadrics network (QsNet): High-performance cluster-
ing technology. IEEE Micro, 22(1):46–57, Jan.–Feb. 2002.

[14] R. H. Reussner. SKaMPI: The special Karlsruher MPI-
benchmark user manual. Technical Report 99/02, Depart-
ment of Informatics, Universität Karlsruhe, Dec. 3, 2002.

[15] G. V. Vaughan, B. Elliston, T. Tromey, and I. L. Taylor. GNU
Autoconf, Automake, and Libtool. New Riders, Indianapolis,
Indiana, Oct. 6, 2000.

[16] M. Woodacre, D. Robb, D. Roe, and K. Feind. The SGI
Altix 3000 global shared-memory architecture. White paper,
SGI, Mountain View, California, Apr. 30, 2003.

Listing 6. Bandwidth in the presence of net-
work contention

1 # Measure t h e i n t r a t a s k ne twork
c o n t e n t i o n f a c t o r as used by t h e

2 # a n a l y t i c a l SAGE per formance model
3 #
4 # Benchmark by Darren J . Kerbyson
5 # I m p l e m e n t a t i o n i n coNCePTuaL by S c o t t

Pakin
6

7 Require language v e r s i o n " 0 . 5 " .
8

9 r e p s i s " number o f r e p e t i t i o n s " and comes
from "--reps" or "-r" with d e f a u l t 1 0 0 0 .

10 m i n s i z e i s " minimum message s i z e " and
comes from "--minsize" or "-m" with
d e f a u l t 0 .

11 maxs ize i s "maximum message s i z e " and
comes from "--maxsize" or "-x" with
d e f a u l t 1M.

12

13 Asser t t h a t " t h e number o f t a s k s must be
even " with num_tasks i s even .

14

15 For each j in { 0 , . . . , num_tasks /2 −1} {
16 ta sk 0 outputs " Working on c o n t e n t i o n

f a c t o r " and j then
17 f o r each msgs ize in { maxsize , maxs i ze

/ 2 , maxs ize / 4 , . . . , m i n s i z e } {
18 a l l t a s k s synchronize then
19 ta sk 0 r e s e t s i t s counters then
20 f o r r e p s r e p e t i t i o n s {
21 ta sk i | i<= j sends a msgs ize byte

message to task i+num_tasks / 2
then

22 ta sk i | i> j sends a msgs ize byte
message to task i −num_tasks /2

23 } then
24 ta sk 0 l o g s j as " C o n t e n t i o n l e v e l "

and
25 msgs ize as "Msg . s i z e (B)

" and
26 e l a p s e d _ u s e c s / (2 ∗ r e p s) as

" 1 / 2 RTT (us) " and
27 (1 E6∗msgs ize ∗2∗ r e p s) / (1M∗

e l a p s e d _ u s e c s) as "MB
/ s "

28 }
29 }

10

